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Abstract— Learning from demonstration is a promising way
of teaching robots new skills. However, a central problem when
executing acquired skills is to recognize risks and failures.
This is essential since the demonstrations usually cover only
a few mostly successful cases. Inevitable errors during exe-
cution require specific reactions that were not apparent in
the demonstrations. In this paper, we focus on teaching the
robot situational awareness from an initial skill demonstration
via kinesthetic teaching and sparse labeling of autonomous
skill executions as safe or risky. At runtime, our system,
called ILeSiA, detects risks based on the perceived camera
images by encoding the images into a low-dimensional latent
space representation and training a classifier based on the
encoding and the provided labels. In this way, ILeSiA boosts
the confidence and safety with which robotic skills can be
executed. Our experiments demonstrate that classifiers, trained
with only a small amount of user-provided data, can successfully
detect numerous risks. The system is flexible because the risk
cases are defined by labeling data. This also means that labels
can be added as soon as risks are identified by a human
supervisor. We provide all code and data required to reproduce
our experiments at imitrob.ciirc.cvut.cz/publications/ilesia.

I. INTRODUCTION

Learning from demonstration has a huge potential to
reduce the setup cost and increase the flexibility of robots
thanks to the intuitive teaching of new manipulation skills.
This involves guiding a robot kinesthetically through a task
to acquire a nominal demonstration that the robot is expected
to reproduce. A central problem remains to decide at every
moment if it is safe to execute such a learned skill. Identi-
fication of situations that pose a risk requires a novel level
of task-dependent situational awareness. Although there are
works that focus on creating situational awareness for robots
to enhance their planning capabilities [1], these typically do
not consider the very fast feedback loops that are required in
robotic skill execution. Timely identification and addressing
of pending failures, we call them risks, can often prevent
harm or lead to successful recovery.

In this paper, we address the problem of recognizing risks
during skill execution from camera images given a very
limited amount of supervision by the user. To this end, we
propose a method called ILeSiA: Interactive Learning of
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Fig. 1. An illustration showing the usage of the ILeSiA system. The robot
assesses the potential risk of the situation based on the image. Manipulation
tasks use the Robothon Challenge Box 2023 to demonstrate various skills.
One example, ‘Open a Door,’ is illustrated, with a red overlay highlighting
areas where risky behavior is likely.

Situational Awareness from Camera Input. With ILeSiA, the
user supervises the first few trials of skill executions and
annotates parts of the trial as risky or safe. Using these data,
ILeSiA trains a Gaussian Process (GP) risk estimator which
based on a low dimensional image representation predicts
a level of for the respective timestep. After that, ILeSiA
can be used to monitor the robot’s skill executions in real-
time, and the risk signal can be used to adapt the robot’s
behavior. In Fig. 1 we show an example of skill execution and
ILeSiA risk predictions for manipulation task (opening door)
involving the Robothon Challenge Box 20231. We use the
Robothon Box for experiments within this paper to evaluate
the proposed ILeSia method.

The main contributions of this paper are:

• Development of a compact Risk Estimation Model: This
model estimates the level of risk at any given timestep
based on visual input from the camera, requiring only
a single demonstration of the risk. It continuously
assesses the environment for potential risks that could
hinder the robot’s task execution.

• Integration into a Learning from Demonstration (LfD)
Framework: The risk awareness module has been imple-
mented within an LfD framework, enabling the system
to capture new demonstrations, retrain the model, and
establish a feedback loop. This feedback loop allows
the robot to adapt its behavior in real-time.

The code, an interactive visualisation tool together with
other materials and results are available online at im-
itrob.ciirc.cvut.cz/publications/ilesia.

1Platonics: Robothon 2023 website: platonics-delft.github.io/
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II. RELATED WORK

The field of fault detection in robotics is an active research
area with many open questions. Numerous studies, like
those by Van and Ge [2] and Wu et al. [3], emphasize
the role of real-time processing in detecting mechanical or
operational anomalies. Park et al. [4] employ a data-driven
strategy to enhance anomaly detection in robotic manipu-
lation, leveraging multiple sensory modalities. They train a
hidden Markov model (HMM) on multimodal observations
to identify deviations during varied manipulation tasks.

In contrast, our research centers on situational risks identi-
fied through visual inputs, expanding the scope to include not
only operational faults (e.g., door failing to open when they
should), but also situational awareness (e.g., human hands
in the view). This involves the integration of perception,
reasoning, and situational awareness, as suggested by Ruiz-
Celada et al. [1], who advocate for enhanced robotic percep-
tion capabilities through smart integration of sensor data and
reasoning technologies.

Further bridging the gap between traditional fault detection
and modern risk assessment are interactive imitation learning
(IIL) techniques, which provide a framework for robots to
learn complex tasks through human feedback [5]. Techniques
like DAgger (Data Aggregation) [6] and ThriftyDAgger [7]
optimize the learning process by focusing on scenarios where
human intervention is most critical, thereby reducing the
expert burden as explored in FIRE (Failure Identification to
Reduce Expert Burden) [8].

Distinctively, our approach also considers the automated
handling of predicates and state estimation in contact-rich
tasks [9], which contrasts with systems that rely on hand-
crafted feature predicates. This enables a more dynamic
and responsive system, capable of adjusting to new and
unforeseen environmental conditions.

Overall, while traditional studies lay a solid foundation
for understanding and detecting faults in robotic systems,
our work extends these concepts into the broader and more
complex domain of situational awareness through real-time
video analysis, ensuring that robotic systems can detect risks
and call the attention of a human using active learning or a
human can intervene and correct situations that would not
have been considered as safe before.

III. METHOD

A. Kinesthetic Demonstration

We assume that a trajectory for individual skill is recorded
by kinesthetic teaching using the existing Learning from
Demonstration (LfD) module2, initially developed for the
2023 Robothon challenge (refer to Fig. 1). The camera
mounted on the end effector is recording a video during this
demonstration. The LfD module enables the teaching and ex-
ecution of robotic skills through kinesthetic demonstrations.

These newly acquired skills are stored and later performed
as fixed trajectories within the task space coordinates. This

2Platonics: Robothon 2023 website: platonics-delft.github.io/
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Fig. 2. Venn diagram example of variable space. Images are sorted as safe,
risky, or novel.

h

Encoder Decoder

latent dim

Gaussian Process

Risk prediction

Fig. 3. Video embedding architecture utilizing a 4-layer autoencoder and
its connection to the risk estimator.

ensures to have consistent camera views during the trajec-
tory execution even when the target object moves between
individual demonstrations. We call the originally recorded
trajectory a nominal trajectory. The aim is to keep the model
simple with short training and inference time so it is useful
in industry and for Human-Robot Interaction, where the
deviation from the designated path is considered risky. If
the angle or distance relative to the target object would vary
with each execution of the skill, the model would need to
generalize across various views of the object, necessitating
a more complex model.

B. Risky or Safe: Learning and Judging the current situation

The images observed during the demonstration can be
classified into three categories: safe, risky, or novel (refer
to the Venn diagram in Fig. 2). The goal of our model is
to accurately classify incoming images into these categories
based on training data, where images are explicitly labeled
as either safe or risky.

To effectively detect risky situations during a novel
demonstration, we initially process the video signal, resize
it and convert to grayscale. Subsequently, we embed the
input images into a latent space utilizing an Autoencoder
network (see Fig. 3). This transformation not only reduces
the data dimensionality but also enhances our model’s ability
to efficiently analyze and interpret the video data for potential
risks.

Then we create an input vector o for the Risk Estimator
by concatenating latent space vector h corresponding to the
sample from the demonstration at time α, normalized time α,
and Cosine distance d between the latent vector h and latent
vector h∗, corresponding to the sample from the nominal
(kinesthetically learned) demonstration, at time α:

o = h⊕ α⊕ d, (1)

where ⊕ is concatenation. The real-time risk likelihood r for
each skill is quantified using the following formula:

https://platonics-delft.github.io/


r = R(o), r ∈ [0, 1], (2)

where R denotes the method used for risk estimation. We
propose to use a Gaussian Process (GP), which provides a
probabilistic approach for capturing uncertainties and cor-
relations within data. Especially its flexibility and robust
interpolation capabilities might be enabling the risk estimator
to detect various types of risks. GP is defined as:

f(x) ∼ GP(m(x), k(x,x′)), (3)

where m(x) is the mean function specified as m(x) = 0 and
k(x,x′) is the covariance function specified as Radial Base
Function (RBF) kernel:

k(x,x′) = σ2
p exp

(
−∥x− x′∥2

2λ2

)
, (4)

where σ2
p is the prior uncertainty of the model. The length-

scale parameter λ determines how quickly the similarity
(correlation) between inputs declines with distance.

The central challenge lies in the approach to handling
novel situations. Novel situations are identified by detecting
deviations from the distribution of the training samples,
utilizing the model’s inherent uncertainty. Images labeled
either risky or safe are used for training.

When making posterior predictions (function f∗) at new
points X∗ based on training data X and their ground truth
risk labels y, the Gaussian Process provides a posterior
predictive distribution, which is also multivariate normal:

f∗|X,y,X∗ ∼ N (µ∗,Σ∗) (5)

where:
µ∗ = K(X∗,X)[K(X,X) + σ2

nI]
−1y

Σ∗ = K(X∗,X∗)−K(X∗,X)[K(X,X) + σ2
nI]

−1K(X,X∗)

σ2
n is the noise variance parameter, computed from all

training samples (prior uncertainty). σp is set to 1 such that
when you go out of distribution the sum of the two terms
will also converge to one when going out of distribution.
K(X,X) is the covariance matrix computed from the RBF
kernel over all pairs of inputs in X. I is an identity matrix.

Following the human approach to handling novel situa-
tions, we consider risky everything that is not safe, i.e., novel
situations or situations corresponding to already labeled risky
situations. To capture this by our model we propose a novel
method for estimating risk r of the given situation:

r = µ∗ + σ∗, (6)

where µ∗ and σ∗ are parameters of the predicted posterior
distribution provided by the Gaussian process

Finally, the binary variable indicating the presence or
absence of risk is computed given the selected threshold:

y =

{
1 if r > 0.5

0 if r ≤ 0.5
. (7)

When the risk is detected (e.g., an unexpected object or
human hand is detected), a robot is stopped and calls for
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Fig. 4. Interactive learning loop.

attention of the teacher to handle the risky situation (see the
following Sec. III-C).

C. Active and Interactive Labeling of situations from human
feedback

The Risk Estimator is integrated into the Learning from
Demonstration Module (see Fig. 4) as a Video Safety
Module. The Risk Estimator is a key enhancement to the
existing Learning from Demonstration (LfD) Module2 (refer
to Fig. 1).

The integration of the Risk Estimator into the Learning
from Demonstration (LfD) package (as illustrated in Fig. 4)
was designed to function autonomously, meaning each new
skill execution provides fresh samples for learning the risk
estimator. Any user interventions during a skill execution are
automatically added to the training set including the provided
labels. For instance, if an undesirable event occurs during a
skill’s demonstration and the user halts the execution, this
interruption is attributed to the user.

Labeling is facilitated through interactive inputs either
from the keyboard or directly using the Franka Emika robot’s
integrated buttons3. This method allows for immediate and
accurate tagging of relevant data points as safe or risky
during demonstrations.

IV. EXPERIMENTAL SETUP

We test the proposed system in the context of manipula-
tions of the Robothon Box (Fig. 1), which was part of the
Robothon Challenge 2023 setup [10]. Our setup features a
Franka Emika Panda robot with an Intel Realsense D400
series camera mounted on the end-effector. Robotic skills
are taught via kinesthetic teaching and stored relative to the
box. We execute the learned skills and record images with a
frequency of 20Hz to ensure a comprehensive visual record.

The remainder of the Section describes the skills and
failure modes (Sec. IV-A), and the video embedding (Sec. IV-
B). This section is concluded with notes on the dataset
collection for the risk estimator (Sec. IV-C)

3Franka Buttons package: github.com/franzesegiovanni/franka buttons

https://github.com/franzesegiovanni/franka_buttons
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Fig. 5. Examples of recorded manipulation skills and their labeled
conditions that are set to be predicted with risk estimator based on prepared
dataset labels.

A. Recording manipulation skills

The experiments utilized specific manipulation tasks in-
volving the Robothon Box, including: 1) Pick a Peg (see
Fig. 5 (left)), 2) Open a Door (see Fig. 1), 3) Place a Peg, 4)
Move Slider, and 5) Pick a probe. See our interactive tool4

for examples of the tasks.
In the context of these tasks, we consider the following

states or situations that depending on the task might pose a
risk (see Figure 2 and complementary video material within
the interactive tool provided on our website4):

1) Configuration of a door (opened/closed).
2) Incorrect rotation of a peg during the picking process.
3) Rotation of a peg after placement.
4) Configuration of a slider (start/end position).
5) Presence of obstacles or clutter, such as tangled cables,

on the scene.
6) Visibility of human hands within the camera’s view.
We group these situations into known risks (1 to 4), i.e.,

risks included and labeled in the training data, and novel
risks (5 and 6), i.e., risks that the system hasn’t been trained
for.

For each task, we first recorded a demonstration via
kinesthetic teaching and trained a robot skill from it. While
recording the trajectories, we made sure that the camera was
capturing enough information about the execution, such that
a human watching the video stream could identify the risks.
Then, we recorded four executions: one was safe, while
the other three were manipulated to exhibit known risks.
Additionally, we recorded four to five testing executions
simulating real-world usage scenarios by additionally to the
known risks also including the novel risks (e.g., tangled
cables or human hands in the view).

In total, 5 kinesthetic demonstrations, 20 training exe-
cutions (including various types of risks), and 22 testing
executions were recorded4.

B. Video embedding

We compare two different video embedding approaches: 1)
the custom autoencoder described above and 2) a pre-trained
ResNet-50 model [11].

For the autoencoder, the images from the camera are
resized to 64x64 pixels and converted to grayscale to re-
duce computational complexity while preserving key visual

4Interactive tool for visualization of recorded trajectories and estimated
risk: imitrob.ciirc.cvut.cz/publications/ilesia/video

details. Subsequently, the images are embedded into a latent
space (as described in Sec. III-B).

The custom video embedding model (see Fig. 3) em-
ploys a 4-layer autoencoder architecture, comprising layers
of convolution, normalization, ReLU activation, and max
pooling operations. This embedding process compresses the
input video signal into a compact latent space representation
H = (h)ni=0 (n is a number of frames) with dimensions
∈ Rn×l, where l is latent space dimension.

The pre-trained ResNet-50 model [11] accepts RGB im-
ages with a resolution of 224x224 pixels and predicts the
ImageNet class labels. To make a fair comparison, we
upsample and normalize the grayscale image used for the
autoencoder as RGB image. We extract as features the tensor
values after either block 2 or 3, i.e., either 256 or 512, which
are then used as embedding of the image and as input to the
risk estimator.

C. Risk Estimator Dataset collection

The dataset
D = {di}si=0 (8)

for training the risk estimator is composed of s individual
frames di (from all training executions), each represented as
a triplet:

di = (hi, Ri, Si) (9)

where hi is the feature vector extracted from the frame
at index i, Ri is a binary risk label flag, and Si is a binary
safe label flag. Within each execution, there are two labeling
windows (in the beginning and at the end) where the user
labels the given situation as either risky or safe. Examples
of these labeling windows for tasks ‘Pick a peg’ and ‘Open
door’ are shown in Fig. 5.

Only labeled frames comprise the final dataset

Dselected = {(di ∈ D | (Ri ∨ Si) = 1}. (10)

Additionally, all frames recorded during the kinesthetic
demonstration are considered as safe. Unlabelled samples
are discarded to not make unreasonable assumptions about
the labeling process.

V. EXPERIMENTS

In this section, we present the experiments conducted to
validate the proposed method and individual design deci-
sions. The experiments evaluate two different embedding
techniques and two different risk estimation methods. We
use the datasets described in Sec. IV, i.e., five tasks with
each train and test executions including the described risks
(see Sec. IV-A).

The following experiments are presented: Sec. V-A
presents the hyperparameter selection for the architecture
and the training procedures. In Sec. V-C, we present results
regarding the impact of embedding quality. Then, Sec. V-
B analyses the performance of the proposed method and the
baseline on known risks. Sec. V-D continues with novel risks.

http://imitrob.ciirc.cvut.cz/publications/ilesia/video


A. Experiment configuration

In this section, we present our choices for hyperparame-
ters for the experiments, i.e., the baseline architecture, the
latentspace dimension, and the training parameters.

1) Risk estimation baseline: We compared the proposed
method based on Gaussian processes (as described in
Sec. III-B, Eq. (6)) with a multi-layer perceptron (MLP)
as baseline. The MLP architecture includes 2 hidden layers,
where each hidden layer has 30 nodes. Binary cross entropy
loss is used with Adam optimizer and learning rate 1e− 4.

2) Size of Latent Space h: The size of the latent space
of the autoencoder has significant impact on the overall
performance of the proposed method. To enable reasonable
embedding quality (as seen by the reconstruction images)
the latent space needs sufficient size to store the state and
viewpoint and appearance of the input images. On the other
hand, the performance and training times of GPs degrade
with increasing size of the input dimensions. Informed by
initial experiments, we settled to use a 32-dimensional latent
space.

3) Number of training epochs: The number of training
epochs is dynamically chosen based on the validation loss
on an independent demonstration trial. We train typically for
more than 2000 epochs.

B. Performance for the known risks

First, we evaluated the ability of the model to detect
in testing trajectory the known risks, i.e., risks that were
involved in the training datasets. Experiments compare the
performance of Gaussian Process (GP) and Multi-Layer
Perceptron (MLP) models in terms of their ability to detect
risky situations accurately. In Fig. 6 we compare GP and
MLP risk estimation models for one risky and one safe part
of the testing demonstration. We show the predictions of
the risk estimators along with human labels. Notably, the
Gaussian process can provide stable risk estimation during
the labeled window and the risk levels are also reasonable
outside this human-labeled window. For example, the door
was open even before the human labeled it as safe, so it
is reasonable that the model predicts this area as safe. We
can observe spikes in the predictions by the MLP method
corresponding to wrong risk estimates.

When evaluating all the manipulation skills considered
(see Sec. IV-A), we observed that GP model was consis-
tently performing well on the testing demonstrations (over
96% accuracy on the samples from the labeled area). The
observed errors were due to poor video reconstruction (see
the Sec. V-C). MLP performed better in detecting smaller
image features important for the risk assessment - e.g., it
was able to correctly identify whether the peg was held or
not in the gripper even in poorly reconstructed scenarios
(i.e., those where a human has trouble understanding the
reconstruction).

C. Impact of Reconstruction Quality

The quality of video reconstruction critically influences the
ability of models to detect risky behaviors. Poor reconstruc-
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Fig. 6. Prediction on known risks on two test trials. Risk estimation based
on Gaussian processes (GP) is compared to multilayer perceptron (MLP).
Human labels are visualised (Safe area - green bar, Risky area - red bar).
Accurate risk estimation is depicted by blue background and error by red
background. Original and reconstructed images are shown together with the
reconstruction loss value. Left: The door is opened as expected. GP does
correctly predict it as safe. Right: The missing peg in the gripper correctly
triggers risk. We observe spikes in the risk estimation for the MLP method
outside the trained area as well as within the labeled one, corresponding
to the wrong predictions. GP reasonably predicts also the areas outside the
labeled area.

tion quality often leads to misclassifications, as demonstrated
by Fig. 7 (right). You can see that the GP can handle
the poor reconstruction better than the MLP model. This
highlights the importance of robust feature extraction in
training data. Testing latent space sizes ranging from 8
to 48 revealed that sizes 16 and above could reconstruct
risky behaviors in sequences up to 700 frames. However,
smaller dimensions, such as size 12, failed to accurately
reconstruct details like the peg’s cable or slider position
changes. Larger dimensions, such as 48 or 64, showed some
success in capturing various peg rotations but struggled with
comprehensive generalization across an infinite range of peg
angles. In scenarios with a limited number of states, like a
door being open or closed, reconstructions were significantly
more accurate.

a) ResNet Comparison: : A comparison with the pre-
trained ResNet-50 model revealed that it performs compara-
bly to the Autoencoder-based video embedding, particularly
when utilizing features extracted at the end of stages 2
and 3. However, the effectiveness of these features varies
with the complexity of the risk behavior being analyzed.
For instance, detecting the holding cable typically requires
features from earlier stages, which capture more primitive
shapes. Conversely, distinguishing between an open or closed
door demands features from later stages that encapsulate
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Fig. 7. Degradation of the performance due to incorrect video recon-
structions. Risk estimation based on Guassian processes (GP) is compared
to multilayer perceptron (MLP). Human labels are visualised (Safe area -
green bar, Risky area - red bar). Accurate risk estimation is depicted by
blue background and error by red background. Original and reconstructed
images are shown together with the reconstruction loss value. Left: The
cable in the original image is not reconstructed, causing the risk trigger.
Right: Phantom cable that is not observed in the video is encoded into a
latent vector and is triggering risk detection for the MLP method.

more complex visual information.

D. Quality of the risk estimation for novel risks

In this experiment, we evaluate the ability of the proposed
model to handle novel risks, i.e., risks that were not present
during the training demonstrations. An example of such a
risk might be a novel object appearing in the scene (e.g.,
human hands, tangled cables, etc.) as well as different state
of the object then we would expect during the demonstration
(e.g., open door where it should be closed or wrongly rotated
peg so it cannot be grasped by the gripper). Our model based
on Gaussian processes (see Sec. III-B, Eq. (6)) is designed
so that it can handle such a situation, and any deviation
from a nominal trajectory is classified as risky. We can set
also a specific threshold that determines the magnitude of
change from the distribution required in an image to trigger
a risk alert. This threshold can be adjusted with length scale
parameter λ. Adjusting this setting might vary based on
the desired behavior and required safety measures during
execution. For example, if we set the parameter to 0, we
will consider all novel situations as safe (i.e., optimistic
model) on the other hand setting this parameter to high
values might meet high safety standards, however would
also lead to excessive numbers of false positive detections
if the environment undergoes frequent changes (e.g., due to
illumination) or if the reconstructions of the model are not
perfect. We use as default value of 1 for this parameter.
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Fig. 8. Performance on novel risks. Comparison of Gaussian process (GP)
model (top) and MLP model (bottom). Human labels are visualised (Safe
area - green bar, Risky area - red bar). Accurate risk estimation is depicted
by blue background and error by red background. Original and reconstructed
images are shown together with the reconstruction loss value.

Fig. 8 illustrates the performance of the proposed model
on the trajectory including novel risk (hands in the scene).
The top part of the figure displays an inherent uncertainty
detected in the GP model, where the hands appearing are
causing an increase in the intrinsic uncertainty of the model.
The bottom part shows the performance of the MLP model
which cannot detect these risks accurately. The GP model can
effectively detect novel risks when employing smaller latent
dimensions. Using latent dimensions larger than size 32
does not facilitate sparse connections between sample points,
leading to rapidly decreasing length scales and consequently,
high uncertainty in similar images.

VI. CONCLUSION

In this paper, we have introduced a method to detect risky
situations during robotic manipulations. We demonstrate our
method in a learning-from-demonstration setting, where a
robot is taught to manipulate a Robothon Box. The human
teacher subsequently supervises a few executions of the
learned skill and provides labels for encountered situations.
Our method is based on Gaussian Processes and can detect
the labeled and also novel risks in future manipulations. This
paper widens the range of tasks where robots can safely and
confidently act autonomously. In the future, we will make
our method more robust by incorporating more signals into
the risk estimation. For example, the reconstruction error
of the autoencoder can yield valuable insights. Also, the
tuning of the hyperparameters could be simplified. Finally,
we are also interested in incorporating the proposed method
into the online deliberation functions of a robot to take
advantage of the increased situational awareness and gather
more experiences with the system.
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